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A b s t r a c t  

The purpose of this paper is to find out explicit solutions of the Betchov-Da Rios soliton equation 
in three-dimensional Lorentzian space forms. We start with non-null curves and obtain solutions 
living in certain fiat ruled surfaces in ~_3 and H~, as well as in ~3 and ~3. Next we take a null curve 

and have got solutions lying in the associated B-scrolls in [1_ 3, ~ and H~. It should be pointed out 
that we extend previous results already obtained, and as far as we know, this is the first time that 
solutions in the De Sitter 3-space appear in the literature. Soliton solutions are characterized as null 
geodesics in B-scrolls. © 1999 Elsevier Science B.V. All rights reserved. 
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1. I n t r o d u c t i o n  

Physical  systems such as vor tex f i laments in perfect  fluids, one-d imens iona l  classical  

con t inuum Heisenberg  chains and elastic strings can be thought  of  as one-d imens iona l  

ex tended objects,  the support  o f  which,  their  centerl ine,  may  be mathemat ica l ly  mode led  by 
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a generally twisted space curve y C R 3. Regardless of the physical properties that actually 

characterize the dynamics of  such systems, for the moment let us take into consideration the 

pure kinematics of  curves as an idealization of the general evolution of  these systems. Let 

us identify the thin filament with the vortex line y,  smooth and free from self-intersections. 

The velocity induced by the vortex line Y at an external point was obtained by Da Rios by 

means of  the so-called localized induction aproximation (LIA). By using the Biot-Savart 

integral to express that velocity and ignoring finite contributions, Da Rios found out that 

the asymptotic velocity contribution is given along binormal direction, say v = xB, x 

being the curvature of  the vortex axis. Hence, under LIA (neglecting long-distance effects 

and self-interaction), vortex filaments move simply in the binormal direction with a speed 

proportional to the curvature (see [5-7] for more details). 

The intrinsic equations governing vortex motion were also derived by Da Rios. They are 

given in terms of  time derivatives of  curvature and torsion of  y. Let Y (s, t) be time variations 

of  y ( s ) ,  s being the arc length parameter. Let {x, r, y '  = T, N, B} be the Frenet-Serret 

apparatus along y. Let us write the velocity as O y / O t  = ~2 = v T T  + VNN q- OBB, where 

v r ,  VN and v8 are regular functions of s and t. The intrinsic equations are given in terms of 

v~v, h? and ¢, where overdots and primes denote partial derivatives with respect to t and s, 

respectively. The first one writes down as v x = XVN which gives a necessary and sufficient 

condition for inextensibility of  y and can be regarded as a congruence condition for material 

points of the curve. Actually, that means simply that y is arc-length parametrized. Under 

LIA, VT = VN = 0 and v8 = x, so that the two remainder equations are reduced to the 
so-called Betchov-Da Rios equations, ~ = - K r '  - 2x ' r  and ~ = ( x " / x  - r2) ' + x x ' .  

These equations prescribe (up to rigid motion) the evolution of  the vortex filament in an 

infinite domain of  E3 for given initial conditions x (s, 0) and r (s, 0). Otherwise, under LIA, 

the motion of a thin vortex is governed by the simple equation (also called the Betchov-Da 

Rios equation) 

Oy - -  OF OF 
- - A V ~  
Ot ~ Ot O s '  

V being the Levi-Civita connection of  the space. It is worth noting that, under LIA, total 

length, total squared curvature and total torsion are conserved quantities in time (see also 

[7]). 

In [ 1,2] we have found solutions of  the Betchov-Da Rios in the Riemannian 3-sphere and 
in the three-dimensional anti-De Sitter space. In the first case, by using the Hopf fibration, 

we have got a nice geometric characterization of  those solutions: they are helices in 5 3 and 

geodesics of Hopf cylinders in 5 3. In the second one, we have also obtained that solutions 
are the geodesics of B-scrolls in H 3. Closed solutions are found in any case. To point out 

the chief difference between Riemannian and pseudo-Riemannian situations, we have to 

mention that soliton solutions appear in H~ and they are characterized as null geodesics of  
B-scrolls in H~. 

The purpose of  this paper is to state and find out solutions of the Betchov-Da Rios soliton 
equation in three-dimensional Lorentzian space forms. Actually, we give explicit examples 
of  surfaces in n_ 3, as well as in the De Sitter ~ and anti-De Sitter H~ worlds, where the 
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solutions are lying. To do that we start with non-null curves and get solutions living in 

certain flat ruled surfaces in l_ 3 and H~, as well as in R 3 and 5 3. In a second step, we take a 

null curve and find out solutions lying in the associated B-scrolls in n_ 3, 5~ and ~ .  Several 

interesting facts should be pointed out. First, we extend the results already obtained in [ 1,2]. 

Secondly, as far as we know, this is the first time that solutions in the De Sitter 3-space 

appear in the literature. 

2. Setup 

Let aT/~ (c) be a three-dimensional pseudo-Riemannian space form of curvature c and 

index v = 0, 1. As usual, AT/~(c) is either the pseudo-Euclidean space E,~, or the pseudo- 
4 according to c = 0, sphere S~,(c) C E~, or the pseudo-hyperbolic space H~(c) C R,,+j, 

c > 0 or c < 0, respectively. For the sake of  simplicity, and provided that we need explicitly 

mention neither curvature c nor index v, we will simply write down AT/instead of AT/~ (c). 

Let c~ • 1 C E --+ AT/be an immersed curve and let V be a vector field along c~ in AT/. Let 

us consider the ruled surface M~ in AT/, generated by ot and V, defined by 

X " 1 x ( - a ,  a) --+ aT/, (s, t) -+ X(s ,  t) = exp~i.,.~(tV(s)). 

For each fixed s, the curve g~(t), defined by t --+ g~.(t) = X(s ,  t), is the geodesic of  a4 

uniquely determined by the initial conditions E, (0) = or(s) and X,!(0) = V (s). Let {X,, Xt} 

be the frame defined by 

Xs(s.  t) = d X c s , t  ) = (dexpc,(s))tv(~l(a'(s) + tV ' ( s ) )  

and 

(') X,(s,  t) = dXc~.t ) Ot = (dexpacs'))tvc~l(V(s))' 

V'(s) being the covariant derivative along oe of  V (s). Observe that, at t = O, X,  (s, 0) = 

oe'(s) and X, (s, 0) = V(s) ,  so that X(s ,  t) will define a regular pseudo-Riemannian surface 

in 37/whenever oe'(s) and V (s) are linearly independent and the plane rI = span{d,  v} 

is non-degenerate in aT/. According to the causal character of oe' and V, there are four 

possibilities: 
(1) oe' and V are non-null and linearly independent. 

(2) c~' is null and V is non-null with (a' ,  V) ~ 0. 

(3) a '  is non-null and V is null with (~', V) # 0. 
(4) or' and V are null with (d ,  V) :~ 0. 

It is easy to see that, with an appropriate change of the curve a,  cases (2) and (3) reduce 

to (1) and (4), respectively. 
Now we are going to do a detailed study of  these kinds of  surfaces. To compute the metric 

induced on M~, we apply the Gauss lemma to see that 

(X, .  X,)  = (or' + iV ' ,  V) = (o(, V),  (X,, X,)  = (V, V) = ~v. 
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where ev E {-1 ,  O, 1}. Note that, for each fixed s, the vector field Xs is a Jacobi vector 

field along ys(t) with initial conditions Xs(O) = ot'(s) and X~(O) = V'(s) .  As M is a 

space of  constant curvature, we can write Xs(s,  t) = f ( t ) T s ( t )  + g( t )Qs( t ) ,  T~(t) and 

Qs (t) being parallel translation vector fields along ×~ (t) of  vectors ot'(s) and V'(s) ,  respec- 

tively. Furthermore, the differentiable functions f and g satisfy the following differential 

equations: 

f "  + e v c f  = O, f (O)  = 1, f ' (O) = O, 

g" + e v c g  = 0 ,  g(O) = O, g'(O) = 1. 

Observe that, under the above conditions, the functions f and g must satisfy the following 

system of ordinary differential equations: 

f '  = --evcg,  g, = f ,  f 2  + evcg2 = 1. 

Then we have 

(Xs, Xs) = f2(Ts ,  Ts) + 2 fg (Ts ,  Qs) + g2(Qs, Qs) 

= f2(ot ' ,  or'} q- 2fg(ot ' ,  V') + g2{VI, V').  

Hence the matrix (Gi.j) of the induced metric on M~, states as follows: 

( f2(ot',ot'} + 2fg(ot ' ,  V') + g2(V' ,  V') (ot1, V) ) 

(~', V) ev " 

Assume now that we have choosen an orientation on ,Q. Then a volume element 09 is deter- 

mined on M by the condition co(X, Y, Z) = ( -  l) '~, for any positively oriented orthonormal 

frame {X, Y, Z}. Therefore, for any couple X and Y of  tangent vectors to ~t, the vector 

product X m Y is the unique tangent vector to 3~t such that (X A Y, Z) = w(X, Y, Z), for 

any tangent vector Z. It is well known that the vector product of  parallel vector fields is 

again a parallel vector field, so that a vector field ~ normal to M,~ in A) can be given in 

terms of Xs m Xr and therefore we can write 

~(s, t) = X~ A Xt = f ( t ) P s ( t )  + g(t)O_s(t), 

where/3~ (t) and Qs(t) are parallel translation vector fields along y,(t)  of  ( d  A V)(s)  and 

(V I A V)(s) ,  respectively. Bearing in mind that (X A Y, X A Y) = ( -1)~((X,  X)(Y, Y) - 
(X, y)2), we see that (~, ~) = ( - 1 )  ~ det(Gij).  

When or(s) is a non-null curve, if we take the vector field V orthogonal to a ' ,  then the 
metric (Gij) writes down as 

The unit normal vector field is given by ~1 = e~, where the function e is obtained from 
e 2 = ec~/Gll. The shape operator S is easily computed from 
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(SX.,., X s )  = -e(Xs,  ~s) = e(X,.s, ~), 

(SX, . ,  X , )  = -e(Xs,  ~,) = e(X,,, ~), 

(SX, ,  X,) = - e ( X , ,  ~,) = e(Xtt ,  ~) = O, 

and the curvature of  the surface is given by 

-- (~c~eV ~ e2(Xst, ~)2" 
K = c \ GI1 // 

As Xs = fT~ + gQs, we have that X~,t = f 'Ts  + g' Qs and therefore 

Thus 
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(Xs,, ~) = f f ' ( d ,  or' A V) + fg ' {a '  A V, V') + f ' g ( a ' ,  V' A V) + g2(V',  V A V') 

: ( f g '  - f 'g)o~(a' ,  V, V') = (a' A V, V'). 

K = c - -  (--1)t' ( (a' A V' V') ) (2.1 

3. Solutions in flat ruled surfaces 

Let ot • I ---> M be an immersed unit speed curve in ,~/. Let { T, N, B } be the Frenet 

frame along ~. The Frenet equations relative to this frame is written down as follows: 

V T T  = ~2tcN, V T N  = - -e lXT -- e3TB, V T B  = ~2"cN, 

where ei = (T, T), e2 = (N, N) and e3 = (B, B) stand for the causal characters of T, N 
and B, respectively; x and r being the curvature and torsion functions of  or. 

Consider the surface M,~ in M parametrized by 

X (s, t) = exp~,,.)(t B(s)).  

Then we have 

X~(s, t) = (dexp~(s))te(s)(T(s) + s z r ( s ) tN(s ) ) ,  

Xr (s, t) = (d expc<00),B0~ J (B(s)).  

Since X, is a Jacobi vector field along the geodesic X~(t), we can write X~(s, t) = 
f ( t )T~( t )  + eer(s)g(t)N~(t) ,  T~.(t) (resp. N~(t)) being the parallel translation of T(s)  

(resp. N(s))  along X~(t) and the functions f and g are determined as above. 

Assume now that M,~ is flat. From (2.1) this is equivalent to r2(s)  = ( - l ) t ' c .  The unit 

normal vector field to M~ can be written as 

r#(s, t) = f ( t ) N s ( t )  - e l r (s )g( t )Ts( t ) .  

For later use we have that Xs A XI = e2~7, X~ A 71 = -e3X~ and Xt A 0 = el X,.. On the 

other hand, it is quite easy to get 

Vx, X~ = e2KO, Vx, Xt = e2 r r / ,  Vx, Xs = e z r r / ,  ~x,  Xt = O. 
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It is a straightforward computation that, in general, the standard parametrization X (s, t) 

of  M~ is not a solution of  the Betchov-Da Rios equation. In view of  the geometric struc- 

ture of  ruled surfaces, that was explicitly described in Section 2, it seems natural to seek 

for parametrizations of  them being congruence solutions of Betchov-Da Rios equation. A 

special case appears when ot is a curve of  constant curvature x; in this case, it suffices to 

write Y(s,  t) = X(s ,  ct), c = --E2E3x, to find out that Y is a solution of  this equation. In 

the main result of  this section we will show that all solutions can be essentially found in 

this way. 
Let h ~ Diff(R 2) and write h(u, v) = (s(u, v), t(u,  v)). so that s.t~, - svt. does not 

vanish anywhere. Now Y(u, v) = X (s (u, v), t (u, v)) is a solution of  the Betchov-Da Rios 

equation if and only if Y./~ Vr,, Yu = Yv and (Yu, Y.) = e. e being the causal character of 

the u-curves. In particular. (Y., Yv) = 0. We put Y. = s .Xs  + t .X t  and Y,, = s~,X, + tvXt. 

A straightforward computation allows us to get 

- -  9 - -  

Vy,, Yu = s . .  X~. + t . .  Xt + 2s. t .Vx~ Xt + s sVx ,  Xs 

= suuXs + tuuXt -t- e2(2rSutu + xs?,)q. 

We find that 

I1. A V r . Y .  =e,e2(xsZh,  + 2rsut~)Xs - eze3(xs~ + 2rsZt . )X ,  

+e2(Sutuu - Suutu)~l. 

Therefore Y (u, v) is a solution of  the Betchov-Da Rios equation if and only if the following 

system of partial differential equations holds: 

S v = e l e Z S u t u ( t c s u  + 2rtu), tv = -e2e3s2(tcs.  + 2rtu), 0 = Sut.. - suut.. 

It follows that tu = bs. ,  for a certain function b, only depending on v, which measures the 

slope of  the u-curves (v constant). On the other hand, since (Y., Y.) ~ = elS u +e3t~7 = e, we 
find that e = (el + e3b2)s~. Then s, only depends on v, so that s(u, v) = hi (v)u + h2(v) 

for certain differentiable functions h 1 and h2. In particular, s , ,  = t , ,  = 0, and so we obtain 

Vr,, Y, = 6 2 s 2 ( K  -1- 2br)t/. 

On the way, the following claim has been proved: the u-curves are geodesics in the surface 

M~,. The curvature function of  these curves in ,Q is given by 

p(u,  v) = (x + 2br)su 2. (3.1) 

In particular it does not vanish anywhere. 

Now we use the compatibility condition su~ = sv, to get p(u,  v) = f l ( v ) u  + f2(v) 
for certain functions f l  and f2 defined on the whole real line. Consequently, f l  vanishes 
identically, because p does not vanish and is defined on the whole plane. This shows that 

Pu = 0 and from (3.1) we deduce that tc is constant. Now we use the other compatibility 

condition, namely tuv = tvu, to deduce that b, Su and p are all constant. Consequently, we 
have proved the following theorem. 
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Theorem 1, Let a(s)  be an arclength parametrized curve in M with torsion r 2 = ( -  l )" c 

and let Ma be the flat ruled surface parametrized by X (s, t). For any h ~ Diff(R 2) we 

consider Y = X o h : R 2 - ~  mc~. Then Y is a solution of  the Betchov-Da Rios soliton 

equation in 2(4 if  and only if 

(I) c~ has constant curvature, say to, in ](/1 and 

(2) h(u, v) = (s(u, v), t(u, v)) is given by 

s(u, v) = au + e lezabpv  + Cl, t(u, v) -~ abu - s2e3apv + c2, 

where a2(el + e3 b2) = e = 4-1, b c R \ { - x / 2 r } ,  p = a2(hc + 2br)  is the curvature 

o f  the u-curves in ](/I and (cl, c2) is any couple o f  constants. 

Next we are going to show that any solution obtained in this theorem is actually a helix 

in M, whose evolution is made up by helices which are congruent to that one. In order to 

clarify this fact, we only need to compute the torsion of the u-curves. Notice that the unit 

normal to those curves and r/(the unitary normal to Mc, in ~/) agree, and the unit binormal 

is (1/p)  Y,,. Therefore, the torsion 0 of the u-curves is 

I 1 ) s 3 r - ~ , x b - s , r b  2 
O =  V~,7 ,  Y~, = s ~  

- 81 + ~3 b2 

The converse holds too. Given a helix /3 in ~ / w i t h  curvature p and torsion 0, it can be 

regarded as a solution of the filament equation in M living in a certain flat ruled surface 

Mc~. Indeed, just consider the ruled surface M~ over a curve oe in ~¢ with constant curvature 

x = ( e / p ) { e l p  2 + e302 - e3(-1)Vc} and torsion r 2 = ( - 1 ) " c ,  and then take a geodesic 

in M~ with slope b -= ( l / p ) ( e e 3 r  - ~lE20). 

We wish to point out that this theorem allows us to give explicit examples of solutions 

of the Betchov-Da Rios equation in the Riemannian space forms IR 3 and 5 3, as well as in 

the Lorentzian space forms 0_3 and H~ (see [2]). 

Now, we exhibit some examples. 

Example  1 (Solution lying in the Hopflifting o fa  horocycle). Let a : N ~ H~ be the 

curve in H~ C ~4 defined by 

(s) = (cos s + s sin s, s cos s - sin s, s sin s, s cos s). 

It should be noticed that this curve projects down, via the usual Hopf maps, in a horocycle 

of the hyperbolic plane [2]. It is not difficult to see that the unit binormal of this curve is 

time-like and it is given by 

B(s) = (sin s -- s cos s, cos s + s sin s, - s  cos s, s sin s). 

Moreover, the curvature and torsion of ot are computed to be K = 2 and r 2 = 1. The 

B-scroll M~ can be parametrized by 

X(s ,  t) = (cos(s + t) + s sin(s + t), - sin(s + t) 

+ s cos(s + t), s sin(s + t), s cos(s + t)). 
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As a consequence of  Theorem 1, the solutions of  the Betchov-Da Rios equation in H~ lying 

in the above ruled surface are given by Y(u, v) = X(s(u, v), t(u, v)), where s(u, v) = 
a(u + bpv) and t(u, v) = a(bu + pv) with a2(1 - b 2) = +1 and p = 2a2(l -4- b) # 0. 

Example  2 (Solution lying in the Hopf lifiing of a geodesic circle). Let t~ : ~ ~ H~ be 

the curve in H~ C R 4 defined by 

ot(s) = ( p  cos ( q s )  , - p  sin ( q s )  , q sin ( P s )  , q cos ( P s )  ) , 

where p = ~/(2r + 1)/2 and q = x/(2r - 1)/2, and r is a real number with 4r 2 - 1 > 0. 

It should be noticed that this curve projects down, via the usual Hopf maps, in a geodesic 

circle of  the hyperbolic plane [2]. It is not difficult to see that the unit binormal of  this curve 

is time-like and it is given by 

B ( s ) = ( p s i n ( q s ) , p c o s ( q s ) , - q c o s ( P s ) , q s i n ( P s ) ) .  

Moreover, the curvature and torsion of  a are given by x 2 = 16rZ/(4r 2 - 1) and r 2 = 1. 

The B-scroll M,  may be parametrized as 

(q ) (q ) (q ,) (q O) X ( s , t ) =  cos s + t  , - p s i n  s + t  , q s i n  s +  , q c o s  s +  . 

Now we use Theorem 1 to see that the solutions of  the Betchov-Da Rios equation in H~ which 

lie in the above ruled surface are given by Y (u, v) = X (s(u, v), t(u, v) ), where s(u, v) = 
a (u+bpv)  a n d t ( u , v ) = a ( b u + p v ) w i t h a 2 ( 1 - b  2 ) = 4 - 1 a n d p = a 2 ( 4 r  4v/~-Yr 2 - 1 4 -  

2b) :fi 0. 

Observe that when e j -t- e3b 2 = O, Y(u, v) parametrizes a null geodesic of  M~, in Q3 and 

~ (c). A straightforward computation shows that this curve is a singular solution of  the 

Betchov-Da Rios equation. So we have the following corollary. 

Corol lary  2. Let M~ be a flat Lorentzian ruled surface in l_ 3 or H~ (c) where ~ is of constant 
curvature. Then the only soliton solutions of the Betchov-Da Rios equation in 0- 3 or H~ (c) 
lying in M~ are the null geodesics of M~. 

4. Solut ions  in B-scrolls  over nul l  curves 

Let a : I --~ A~ be an immersed null curve in AI (v = 1) with associated Caftan frame 
{A = or', B, C}, i.e., (A, A) = 0, (B, B) = 0, (A, B) : - 1 ,  {C, C) : 1, (A, C) = 0 and 

(B, C) = 0, satisfying the equations 

VAA : k C ,  VAB :)~C, V A C : ~ . A - k - k B ,  

k = k(s) ~ 0 being a function along the curve c~(s) and )~ a constant. 
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Let M~ be the surface in aT/parametrized by 

X (s, t) = exp~i.,.)(t B ( s ) ) .  

This surface is called a B-scroll over the null curve ot (see [3]). As above we have 

X,(s ,  t) = (d expc~(s))tsc,.)(A(s) + t k C ( s ) ) ,  

Xt  ( s, t) = ( d expa(s))t B(.~) ( B ( s  ) ). 

Since X.~ is a Jacobi field along the null geodesic y,.(t) = X ( s ,  t) and h71 is a space form, 

we can write 

X~(s,  t) = As ( t )  + t ) ,Cs( t ) ,  

A,( t )  (resp. C.,.(t)) being the parallel translation of A(s )  (resp. C(s ) )  along E~(t). 

Let ~ = X, A Xt be a unit normal vector field to M,,. A straightforward computation 

yields 

- -  3 v 
~7x, Xs = )v2tXs + )v4t3Xt + (k - k t ')~l, 

V x ,  Xt  = V x ,  Xs = - k 2 t X t  q- )vtl, V x t X t  = O. 

We look for reparametrizations of  X which are solutions of  the Betchov-Da Rios equation. 

To do that let h EDiff(~ 2) and write h(u ,  v) = (s(u,  v),  t (u ,  v)) .  Then Y = X o h is a 

solution if and only if 

Y,, A V V,, Y,, = Y~ . 

and (Y,,, Y,,) = a = :kl .  Bearing in mind that I1,, = s , ,X ,  + t,,X1 and Y,, = st, X~ + t,,Xr, a 

simple computation leads to 

- -  9 - -  

Vy, Y. = s . u X s  + tuuXt + 2S. l u V X , X t  + s74Vx, Xs 

= (s.,, + k"ts~,)Xs + (t,,. - 2)v2ts,,t,, + )v4t3s~)Xt 

+ (2ks,,t,, -+- (k 3 "~ 2 -- )v t - ) s . ) r b  

Now from 

9 
Xs A rl = Xs + )v - t -X t .  Xt A ~l = - - X t .  

we deduce that Y is a solution of  the Betchov-Da Rios equation if and only if the following 

system of partial differential equations holds: 

{ 6  ~ ~ sv t ,  tv = ),~t-,~ ~ {-'~t'' ~ t~, 

k Stt S t, / S u S u S v \ 3 ~ , / t t  St' 

To get solutions of  this system, let c~ be a generalized null cubic, i.e., a null curve with a 

Cartan frame such that )~ = 0 (see [4]). Then it reduces to 

s~, = ks  , tv = - k s u t . ,  0 = Suut. - s . t . . .  

Following a similar procedure to that in the previous section we deduce that s .  = a and 

t .  = ab,  a and b being both constant and related by 2ba 2 = - 8 .  Moreover, k is also a 
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constant function and the u-curves are geodesics in M~ whose curvature in M is/9 = ka 2. 

On the other hand, since the vector field ( l ip)Y, ,  is the binormal to u-curves, we find that 

the torsion 0 of  the u-curves in ,Q is given by 

/ l)  
0 = - ~  Vy,,~, ~r~, = ~ .  

So, we have shown the following result. 

T h e o r e m  3. Let ot (s) be a generalized null cubic in i(4 and let M~ be the B-scroll parame- 

trized by X(s ,  t). For any h ~ Diff(l~ 2) we consider Y = X o h : ~2 __+ M , .  Then Y is a 

solution o f  the Betchov-Da Rios soliton equation in 1(4 if  and only if  

(1) the function k is constant and 

(2) h(u, v) = (s(u, v), t(u,  v)) is given by 

s(u, v) = au + ka3v + cl,  t(u,  v) = abu - kba3v + c2, 

where 2ba 2 = -(~ = 4-1, ~ is the causal character of  the u-curves, b E ~ \ {0} 

and (c,, c2) is any couple o f  constants. Moreover, the u-curves are helices in ,(4 with 
curvature p = ka 2 and torsion 0 = ?~ka 2. 

It is worth noting that we have found out explicit examples of  solutions of  the Betchov-Da 
Rios equation in the three models of Lorentzian space forms ~_3, ~ and H~. The newness 

here is ~ .  

Finally, to illustrate the last theorem we exhibit some examples. 

E x a m p l e  3. Let c¢ : ~ + 0_ 3 be the curve in ~_3 defined by 

(:; s 53 4) 
a ( s ) = k  4 '  2 '  3 + ' k s ~ 0 '  

It is easy to see that this curve is a generalized null cubic in Q_3 with constant curvature k 
and Cartan frame given by 

a ( s ) = k ( s 2 _  1 s2 ~ )  2 ~, s, + , B(s)  = ~(1, 0, 1), C(s)  = (2s, 1, 2s). 

The B-scroll M~ associated to a is parametrized by 

X ( s , t ) =  k - + ~-,  k~ - ,  k + + . 

As a consequence of Theorem 3 the solutions of  the Betchov-Da Rios equation in D_ 3 lying 
in the B-scroll Mc~ are given by Y(u, v) = (Y1 (u, v), Y2(u, v), ~ ( u ,  v)), where 

( a  3 a ) 8 
Yl(u,  v) = k  f f  (u + a2kv) 3 -  ~(u  + a2kv) - - ~ ( u  - a2kv), 

a2k 
Y2(u, v) = ---f-(u + a2kv) 2, 
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( a  3 a ) 8 
Y3(u ,v ) :k  ~ ( u  +a2kv) 3 + ~(u +a2kv) - ~tk (u -a-kv) ,  

with a 6 ~ \ {0} and 3 = ±1. The u-curves are helices in 0_3 with causal character & 
curvature p = ka 2 and torsion 0 = k3a 2. 

Example 4. Let ot : ~ ~ ~ be the curve in ~ defined by 

~ ( s )  = ~ -  , , 

This curve is a generalized null cubic in ~ with constant curvature k and Caftan frame 
given by 

A(s) = T ( -  sin , cos , , , 

(s in[~/ks] - c o s [ x / k s ]  sinh[x/ks] c o s h [ ~ ' s ] )  B ( s )  = ~ -  . . . .  

x/2 [~/ks] cosh[',/ 'ks] s inh[x/ks])  v , , . 

The B-scroll M~ associated to ~ is parametrized by 

t [x/-ks ] sin [ v/k-s] ~ c o s  X { s , t ) : T  cos sin - , 

t [x/ks ] sinh [ ff k's ] ÷ -~, c°sh ) .  cosh [~/ks] -+- ~ sinh , ' Dffks] 

Now the solutions of the Betchov-Da Rios equation in 5~ lying in M. are given by Y(u, v) = 
(x/2/2)(Yt (u, v), Y2(u, v), Y3(u. v), Y4(u, v)), where 

8 U - k a y )  [v/k(au+ka3v)] Y l ( u , v ) : c o s [ v / - k { a u + k a 3 v ) ] - ~ (  a sin 

u  oOco [. (au ,a" . Y2(u, v) : sin [x/-k{au + ka3v,] + -~-~ ( a + v)] 

witha E R X { 0 } a n d S = 4 - 1 .  
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